NumPy is the foundational library for numerical computing in Python. It provides:
import numpy as np # 1D array arr1 = np.array([1, 2, 3]) # 2D array (matrix) arr2 = np.array([[1, 2], [3, 4]]) # Special arrays zeros = np.zeros((3, 3)) # 3x3 matrix of zeros ones = np.ones((2, 2)) # 2x2 matrix of ones range_arr = np.arange(0, 10, 2) # [0, 2, 4, 6, 8] linspace = np.linspace(0, 1, 5) # 5 evenly spaced numbers between 0 and 1 print("1D Array:", arr1) print("2D Array:\n", arr2) print("Zeros:\n", zeros) print("Linspace:", linspace)
a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) # Element-wise operations print("Addition:", a + b) # [5, 7, 9] print("Multiplication:", a * b) # [4, 10, 18] # Broadcasting (applying operations to mismatched shapes) print("Array + Scalar:", a + 5) # [6, 7, 8]
# Trigonometry angles = np.array([0, 30, 45, 60, 90]) * np.pi / 180 print("Sine:", np.sin(angles)) # Statistics data = np.array([1, 2, 3, 4, 5]) print("Mean:", np.mean(data)) print("Standard Deviation:", np.std(data)) # Matrix operations A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) print("Matrix Multiplication:\n", np.matmul(A, B)) print("Inverse of A:\n", np.linalg.inv(A))
Pandas provides DataFrames (tables) and Series (columns) for:
import pandas as pd # Series (1D array with labels) series = pd.Series([10, 20, 30], index=["A", "B", "C"]) # DataFrame (2D table) data = {"Name": ["Alice", "Bob"], "Age": [25, 30]} df = pd.DataFrame(data) print("Series:\n", series) print("DataFrame:\n", df)
# Filtering print("Age > 25:\n", df[df["Age"] > 25]) # Grouping & Aggregation sales = pd.DataFrame({ "Region": ["East", "West", "East", "West"], "Sales": [200, 300, 150, 400] }) print("Average Sales by Region:\n", sales.groupby("Region").mean())
df = pd.DataFrame({"A": [1, None, 3], "B": [4, 5, None]}) print("Original:\n", df) print("Filled NA:\n", df.fillna(0)) # Replace missing values with 0
import matplotlib.pyplot as plt x = [1, 2, 3, 4] y = [10, 20, 15, 25] plt.plot(x, y, label="Line Plot") plt.bar(x, y, label="Bar Plot") plt.xlabel("X-axis") plt.ylabel("Y-axis") plt.legend() plt.show()
import seaborn as sns tips = sns.load_dataset("tips") sns.boxplot(x="day", y="total_bill", data=tips) plt.title("Bill Distribution by Day") plt.show()
import requests # GET request response = requests.get("https://api.github.com") print("Status Code:", response.status_code) print("JSON Data:", response.json()) # POST request data = {"key": "value"} response = requests.post("https://httpbin.org/post", data=data) print("POST Response:", response.json())
from flask import Flask app = Flask(__name__) @app.route("/") def home(): return "Hello, World!" if __name__ == "__main__": app.run(debug=True)
http://127.0.0.1:5000
)django-admin startproject
to create a projectimport sqlite3 conn = sqlite3.connect("example.db") cursor = conn.cursor() # Create table cursor.execute("CREATE TABLE IF NOT EXISTS users (id INTEGER, name TEXT)") # Insert data cursor.execute("INSERT INTO users VALUES (1, 'Alice')") # Query data cursor.execute("SELECT * FROM users") print(cursor.fetchall()) # [(1, 'Alice')] conn.commit() conn.close()
example.db
)This guide covered:
Each library serves a specific purpose in Python development, from data science to web apps. 🚀